高斯消去法與她的數學家們

20131215創刊號

作者:格卡  Joseph F. Grcar

譯者:蘇惠玉

全文閱覽

          • 作者簡介
            格卡是伊利諾大學香檳分校的數學博士並主修資訊工程,畢業後曾在加州森迪亞國家實驗室與勞倫斯柏克萊國家實驗室工作。近年對資訊科學與數學史頗有著述。
          • 譯者簡介
            蘇惠玉,國立臺灣師範大學數學系碩士,現任教於臺北市立西松高中,《HPM通訊》主編。
          • 重點摘要
            ◊ 高斯消去法的演算法最早出現於中國。在西方,線性方程組的代數解法最後由牛頓集大成,歸納了大家熟知的代入消去法與等價消去法。
            ◊ 為了最小平方法與地圖測量的社會需要,高斯發展了專業的消去法演算法,成為電腦時代之前,計算員實務上最常用的聯立方程組解法。
            ◊ 最遲發展的矩陣代數統整各種消去法,並透過馮諾曼應用於早期電腦發展,但電腦的發展又改變了高斯消去法的面貌。
          • 本文出處
            Notices 58 (2011) no.6 AMS.
          • 延伸閱讀
            ◊ Grcar, Joseph, How Ordinary Elimination Became Gaussian Elimination, Historia Mathematica 38 (2011)。作者此文和本文寫於同時期,可說是本文的詳細版。有網路版  http://arxiv.org/abs/0907.2397
            ◊ 郭書春《古代世界的數學泰斗劉徽》(1995) 明文書局。
            ◊ Strang, Gilbert, Linear Algebra (2010春)。麻省理工學院線上開放課程。http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/index.htm
          • 參考資料
            ◊ Demmel, I. Dumitriu, and O. Holtz, Fast linear algebra is stable, Numer. Math., 108(1):59–91, 2007.
            ◊ C. Domingues, Lacroix and the Calculus, Birkhäuser, Basel, 2008.
            ◊ H. Doolittle, Method employed in the solution of normal equations and in the adjustment of a triangularization, in Report of the Superintendent of the Coast and Geodetic Survey … Ending with June, 1878, pages 115–120. Government Printing Office,Washington, DC, 1881.
            ◊ Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear systems, ACM Trans. Math. Software, 9(3):302–325, 1983.
            ◊ W. Dunnington, Carl Friedrich Gauss: Titan of Science, Math. Assoc. Amer.,Washington, DC, 2nd edition, 2004.
            ◊ S. Dwyer, A matrix presentation of least squares and correlation theory with matrix justification of improved methods of solution, Ann. Math. Statist., 15(1): 82–89, 1944.
            ◊ ——, The square rootmethod and its use in correlation and regression, Amer. Statist. Assoc., 40:493–503, 1945.
            ◊ Euler, Anleitung zur Algebra, Lund, 1771.
            ◊ E. Forsythe, Solving linear algebraic equations can be interesting, Bull. Amer. Math. Soc., 59(4):299–329, 1953.
            ◊ E. Forsythe and C. B. Moler, Computer Solution of Linear Algebraic Systems, Prentice-Hall, Englewood Cliffs, New Jersey, 1967.
            ◊ A. Fox, Agricultural Economists in the Econometric Revolution, Oxford Economic Papers, New Series, 41 (1):53–70, 1989.
            ◊ Fox, An Introduction to Numerical Linear Algebra, Clarendon Press, Oxford, 1964.
            ◊ A. Frazer, W. J. Duncan, and A. R. Collar, Elementary Matrices and Some Applications to Dynamics and Differential Equations, Cambridge University Press, Cambridge, 1938.
            ◊ F. Gauss, Theoria Motus Corporum Coelestium in Sectionibus Conicis Solum Ambientium, Perthes and Besser, Hamburg, 1809.
            ◊ ——, Disquisitio de elementis ellipticis Palladis, Commentationes Societatis Regiae Scientiarum Gottingensis recentiores: Commentationes classis mathematicae, 1 (1808–1811):1–26, 1810.
            ◊ ——, Anwendung der Wahrscheinlichkeitsrechnung auf eine Aufgabe der practischen Geometrie, Astronomische Nachrichten, 1(6):81–86, January 1822.
            ◊ ——, Supplementum theoriae combinationis observationum erroribus minimis obnoxiae, Commentationes Societatis Regiae Scientiarum Gottingensis recentiores: Commentationes classis mathematicae, 6 (1823–1827): 57–98, 1826.
            ◊ F. Grcar, How ordinary elimination became Gaussian elimination, Historia Math. 38(2):163Ð218, 201a. doi: 10.1016/j.hm.2010.06.003.
            ◊ ——, John von Neumann’s Analysis of Gaussian elimination and the origins of modern numerical analysis, SIAM Rev., to appear, 2011b.
            ◊ ——, Mathematics turned inside out: The intensive faculty versus the extensive faculty, Higher Education, 61(6), 2011c. doi: 10.1007/s10734-010-9358-y.
            ◊ Green and J. LaDuke, Pioneering Women in American Mathematics: The Pre-1940 Ph.D.’s, Amer. Math. Soc., Providence, 2009.
            ◊ Guicciardini, Derek Thomas Whiteside (1932–2008), Historia Math., 36(1):4–9, 2008.
            ◊ Hart, The Chinese Roots of Linear Algebra, Johns Hopkins University Press, Baltimore, 2011.
            ◊ Hawkins, Cauchy and the spectral theory of matrices, Historia Math., 2:1–29, 1975.
            ◊ ——, Another look at Cayley and the theory of matrices, Archives Internationales d’Histoire des Sciences, 27 (100):82–112, 1977a.
            ◊ ——, Weierstrass and the theory of matrices, Hist. Exact Sci., 17(2):119–164, 1977b.
            ◊ ——, Frobenius and the symbolical algebra of matrices, Hist. Exact Sci., 62(1):23–57, 2008.
            ◊ L. Heath, Diophantus of Alexandria, Cambridge University Press, Cambridge, 2nd edition, 1910.
            ◊ Heeffer, From the second unknown to the symbolic equation, in A. Heeffer and M. Van Dyck, editors, Philosophical Aspects of Symbolic Reasoning in Early Modern Mathematics, pages 57–101, College Publications, London, 2011.
            ◊ Høyrup, Lengths, Widths, Surfaces: A Portrait of Old Babylonian Algebra and Its Kin, Springer-Verlag, New York, 2002.
            ◊ M. Irons, A frontal solution program for finite element analysis, Int. J. Numer. Methods Eng., 2(1):5–32, 1970.
            ◊ Jensen, An attempt at a systematic classification of some methods for the solution of normal equations, Meddelelse 18, Geodætisk Institut, Copenhagen, 1944.
            ◊ Thomas à Kempis Kloyda, Linear and Quadratic Equations 1550–1660, Edwards Brothers, Ann Arbor, 1938, University of Michigan dissertation.
            ◊ E. Knuth, George Forsythe and the Development of Computer Science, Comm. ACM, 15(8):721–726, 1972.
            ◊ F. Lacroix, Elements of Algebra (Tr. J. Farrar), University Press, Cambridge, Massachusetts, 1818.
            ◊ ——, Elemens d’algèbre, Chez Courcier, Paris, 5th edition, 1804.
            ◊ Laderman, The square root method for solving simultaneous linear equations, Math. Tables Aids Comp., 3 (21):13–16, 1948.
            ◊ L. Lagrange, Recherches sur laméthode demaximis et minimis, Miscellanea Taurinensia, 1, 1759. Reprinted in OEuvres de Lagrange, (J.-A. Serret, editor), vol. 1, pages 1–16, Gauthier–Villars, Paris, 1867.
            ◊ M. Legendre, Nouvelle méthodes pour la determination des orbites des comètes, Chez Didot, Paris, 1805.
            ◊ Libbrecht, Chinese Mathematics in the Thirteenth Century, MIT Press, Cambridge, 1973.
            ◊ L. Macomber, The influence of the English and French writers of the sixteenth, seventeenth, and eighteenth centuries on the teaching of algebra, M.A. thesis, University of California, Berkeley, 1923.
            ◊ -C. Martzloff, A History of Chinese Mathematics (Tr. S. S. Wilson), Springer, Berlin, 1997.
            ◊ Newton, Universal Arithmetick, Senex, Taylor et al., London, 1720.
            ◊ Peletier du Mans, L’Algebre, Lyon, 1554.
            ◊ Plofker, Mathematics in India, Princeton Univ. Press, 2009.
            ◊ R¯ashid, Entre arithmétique et algèbre: Recherches sur l’histoire des mathématiques arabes, Société d’Édition Les Belles Lettres, Paris, 1984.
            ◊ G. Reinis, The Portrait Medallions of David d’Angers, Polymath Press, New York, 1999.
            ◊ Robson, Mathematics in Ancient Iraq: A Social History, Princeton Univ. Press, 2008.
            ◊ Rolle, Traité d’algèbre, E. Michallet, Paris, 1690.
            ◊ Shen, J. N. Crossley, and A. W.-C. Lun, The Nine Chapters of the Mathematical Art Companion and Commentary, Oxford Univ. Press, New York, 1999.
            ◊ Simpson, A Treatise of Algebra, John Nourse, London, 2nd edition, 1755.
            ◊ M. Stigler, The History of Statistics: The Measurement of Uncertainty before 1900, Harvard University Press, Cambridge, 1986.
            ◊ Strassen, Gaussian elimination is not optimal, Numer. Math., 13(4):354–356, 1969.
            ◊ Taussky and J. Todd, Cholesky, Toeplitz and the triangular factorization of symmetric matrices, Numerical Algorithms, 41:197–202, 2006.
            ◊ R. Tolley and M. Ezekiel, The Doolittle Method …, J. Amer. Statist. Assoc., 22(160):497–500, 1927.
            ◊ F. Traub, Numerical mathematics and computer science, Comm. ACM, 15(7):537–541, 1972.
            ◊ M. Turing, Rounding-off errors in matrix processes, Quart. J. Mech. Appl. Math., 1(3):287–308, 1948.
            ◊ von Neumann and H. H. Goldstine, Numerical inverting of matrices of high order, Bull. Amer. Math. Soc., 53(11):1021–1099, 1947.
            ◊ Whaley and J. Dongarra, Automatically tuned linear algebra software, in Proc. 1998 ACM/IEEE SC98 Conference, pages 1–27, IEEE, 1998.
            ◊ T. Whiteside, editor, The Mathematical Papers of Isaac Newton, 8 vols., Cambridge University Press, 1968–1982.
            ◊ H. Wilkinson, Some comments from a numerical analyst, J. ACM, 18(2):137–147, 1970.
            ◊ Woepcke, Extrait du Fakhrî, Paris, 1853.
(Visited 18 times, 1 visits today)